Group Theory
Week #6, Lecture #24
(Cauchy)
Theorem V Let 6 be a finite grap, and let p be a paine
divising the order of 6. Then the number of selations
of the equation
$$X^{P}=e$$
 is a multiple of p.
 $P[|G] \Rightarrow p[\#\{xeG|x^{P}e\}] \Leftrightarrow$
 $(this will imply a partial converse to legange)$
 $Froof(t)$ White $|G|=n$, and put
 $S:=\{(X_{1},...,X_{p}): X_{i}\in G \text{ and } K_{i},...,X_{p},X_{p}=e\}$
• Note that $|S|=n...n=n^{p-1}$ stynber
in particular, since $p(n:$
 $[|S|=0 \pmod{p}](f!)$
(II) Consider the action of the group Z_{p} on S by cyclic
permitation of the elements x_{i} . That is
 $Z_{p} = \langle \sigma \rangle$ acts via the $p-cycle \ \sigma = (1...p)$ as
 $[\sigma(X_{1}, X_{2},...,X_{p-1},X_{p}) = (X_{2}...,X_{p},X_{1})]$
(eq: $\sigma(a, b, c, d, e, f) = (b, c, d, e, f, a)$, also $\sigma(a, b) = (b, a|)$
* Verify that $\sigma: S \to S:$
 $X_{1} \times 2 \cdots \times p^{-1} \times p = (2 - 2) \times 2 \cdots \times p^{-1} \times p^{$

$$\begin{array}{c} \mathcal{G}^{k}(x_{1},..,x_{p}) = \mathcal{G}(-\mathcal{G}(x_{1},..,x_{p})) \\ (II) \quad & \text{Analgze the action of } Z_{p} \text{ on } S: \\ & \text{Fixed point set:} \\ & S^{Z_{p}} = \left\{ (x_{1},..,x) : x \in G \ \& \ x^{p} = e \right\} \\ & \text{Remains to show:} \quad p\left[\left| S^{Z_{p}} \right| \right] \\ & \text{First notice that } S^{Z_{p}} \neq \phi, \text{ since } (e_{1},..,e_{p}) \in S^{Z_{p}} \left[e^{B_{e}} \right] \\ & \text{First notice that } S^{Z_{p}} \neq \phi, \text{ since } (e_{1},..,e_{p}) \in S^{Z_{p}} \left[e^{B_{e}} \right] \\ & \text{First notice that } S^{Z_{p}} \neq \phi, \text{ since } (e_{1},..,e_{p}) \in S^{Z_{p}} \left[e^{B_{e}} \right] \\ & \text{General theory} \quad - \text{this institue formula go in the statement} \\ & \text{Now recall the Class Equation:} \left(\text{for } G \text{ acting on } S \right) \\ & \left| S \right| = \left| S^{G} \right| + \sum_{|S| \neq 1} \left[G: G_{q} \right] \\ & \text{In particular, if } G \text{ is a } p \text{group, then, by Lagrange's thereau } \\ & \text{all if proper subgroup have index divisible by } p. Hence: \\ & \left| S \right| = \left| S^{G} \right| \quad (\text{mod } p) \\ & \text{(II) Back to or situation 1 with } G \rightarrow Z_{p} \left[a \text{ popping!} \right] \text{ and } S \text{ as above } \\ & \text{(II) Back to or situation 1 with } G \rightarrow Z_{p} \left[a \text{ popping!} \right] \end{array}$$

From (1) we know $|S| \equiv 0 \pmod{p}$. And so, $|S|^{\mathbb{Z}_p}| \equiv 0 \pmod{p}$. Hence, since $|S^{\mathbb{Z}_p}| > 0$: $|S^{\mathbb{Z}_p}|$ is divisible by p. As a corollar we derive the following (partial) converse to Lagrange's theorem (for subgraps of prime order): Theorem (Cauchy) If p/161, the 6 has an element of order p, and thus, a subgroup of order p.

The lade: Correspondence Theorem
Theorem let NSG and let
$$\pi: G \rightarrow G/N$$
 be the
Canomical projection. Then π induces a 1-to-1 conquisive
 $\begin{bmatrix} Subgroups of G \\ Lontaining N \end{bmatrix} \rightarrow \begin{bmatrix} Subgroups of G/N \\ Lontaining N \end{bmatrix} \rightarrow \begin{bmatrix} Subgroups of G/N \\ Lontaining N \end{bmatrix} \rightarrow \begin{bmatrix} Subgroups of G/N \\ K \leq G/N \end{bmatrix}$
Nelt ≤ 6
 $\pi'(K) \qquad K \leq G/N$
 $\# If G is finsle, then $\begin{bmatrix} |H| = |K| \cdot |N| \end{bmatrix}$
 $K = G/N$
 $\# If G is finsle, then $\begin{bmatrix} |H| = |K| \cdot |N| \end{bmatrix}$
 $frit_{rit}, t_{ij}, t_{ij}$
 $group = Z_2 \oplus Z_2$
 $M_{2(D_N)} = Z_2 \oplus Z_2$
 $Next tupiz : $\begin{bmatrix} Sylow S Theorems \\ Correct Ludwy \\ Sylow ~ 1872 \end{pmatrix}$$$$

Theorem If
$$p^{k} | |G|$$
 for some prime p and $k \ge 0$
then there is a subgroup H with $|H| = p^{k}$:
 $p^{k} | |G| \implies H \le G$, $|H| = p^{k} / P^{k} | H| = p^{k} / P^{k} / P^{k} | H| = p^{k} / P^{k} / P^{k} | H| = p^{k} / P^{k} / P^{k} / P^{k} | H| = p^{k} / P^{k} /$